Tag Archives: with screw

China best Hot Selling Masterbatch Extrusion Extruder Parallel Twin Screw Barrel with Best Sales

Product Description

Quick Details

 

Product Name:Twin Screw Extruder Parts Screw Elements for TSE Machine

Material: W6MO5CR4V2

Color: Metal

Exprience:20 years

Packaging: Wooden Box or Paper Box According to your order

Lead Time: 5-60 days

 

Product Description

 

Screw elements are the main working parts for twin screw extruder which determined the quality and output of plastic products.With high quality,the screw elements assure plastic molecular mixing,cutting,spreading as well as reacting among themselves etc.Extremely high self cleaning performance assure the high quality of the whole production line,for this,our company combiend our experience for years,the merits about foreign countries and the customer’s use,then take them into action,designed all kinds of suitable processing screw element with reasonable parameters,high self cleaning performance,wear resistance,corrosion-resistance.

 

We can satisfy your different material needs:

According to appearance design,
 

 

According to Materical

 

-For wear application:

 Tool Steel:W6Mo5Cr4V2

  PM-HIP material:WR5,WR13,WR14,CPM10V,CPM9V.

-For corrosion application:

  38CrMoAla

  PM-HIP material:WR4,WR13,WR14,CPM10V,CPM9V.

-For wear and corrosion application:

  PM-HIP material:WR13,WR14,CPM10V,CPM9V.

-Other materials:

  Stainless Steel:316L,440C etc.

 

Through the understanding of customers,recommend the most valuable material.

 

 

 

Tool Steel

 

 

W6Mo5Cr4V2 Chemical Composition
  C SI Mn P S Cr Mo V W Cu Ni
W-% 0.88 0.35 0.3 0.571 0.003 4.03 4.81 1.86 5.95 0.12 0.24

Key Features:

1) Tool steel, the steel has a high hardenability and thermal cracking resistance, the steel contains a higher content of tungsten,molybdenum,chromium and alum, good wear resistance, toughness is relatively weakened, with good heat resistance.
2) High hardness,Hardenallity HRC up to 65.

 

Co-rotating Twin Screw Elements for:

 -W&P:ZSK-MC

 -Theysohn:TSK

 -SM:TEK-HS

 -Labtech:LTE

 -Berstorff:ZE

 -Maris:TM-W

 -Feddem:FED-MTS

 -Leistritz:ZSE/LSB

 -APV:MP65

 -JSW-TEX

 -TOSHLBA:TEM

 -KEYA,RuiYA,LANTAI,Umm-N

 

Production Process

 

NO.1

 

Workblank

 

 

Select high-quality raw materials

 

NO.2

 

Piecewise

According to the drawing section length

 

NO.3

 

Hit bottom hole

Rough machining the bottom hole,and then pull spline

 

NO.4

 

Machining thread

Professional high-end processing equipment,rough machining threads

 

NO.5

 

Finish machining thread

 

NO.6

 

Threading grinding

Further control of tolerance
Length:-0.01mm-+0.01mm
OD:-0.03mm-0mm
Transition arc:-0.02mm-+0.02mm

 

 

Packing&Delivery

 

Packing Details: According to your order quantity packaging,shipping wooden boxes,air carton.

Delivery Details: 5-60days after order.

 

1.Rust-proof oil processing,

   Prevent rust in transit.

2.Oiled paper packages,

   Prevent oil dry.

3.Bubble wrap package,

   Prevent collosions.

4.Special foam packaging. 5.Packing 6.Sealing

 

Our Service

 

24-hour Hotline

 

No matter when and where

to call we can find our service to you.

 

 

Pre-sales Consultation

 

We have 5 sales people online,

and whether you have any question

can be solved through online

communication,welcome your consultation.

After-sales Services

 

Receive products have any

questions about the product,

can look for us,we will help

you deal with the the first time,to your satisfaction.

 

All ZT keep pay attention to every step of the details,We are looking forward to the forge ahead together with you!

 

 

 

FAQ

 

How long does it take to get my products since I paid for them?

—According to yout order quantity,we will give you a reasonable delivery date.

 

Can I get the warranty of 1 year for free?

—If you need the warranty,you should pay for it.If not,do not worry ,we have confidence in our products.

 

How is your after-sale service?

—You will get our help in time as long as you find something wrong about our produces.Believe us,you deserve the best.

 

What machine does the product apply to?

—Twin Screw Extruder Machine.

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China best Hot Selling Masterbatch Extrusion Extruder Parallel Twin Screw Barrel   with Best SalesChina best Hot Selling Masterbatch Extrusion Extruder Parallel Twin Screw Barrel   with Best Sales

China Best Sales Made in China High Quality Carbon Steel Zinc Plated Black Coating Hex Castle Nut Bolt Screw Hexagon Slotted Nut with Good quality

Product Description

Made in China High quality Carbon Steel Zinc Plated Black Coating Hex Castle Nut Bolt Screw Hexagon Slotted Nut

Standard DIN,ASTM/ANSI JIS EN ISO,AS,GB
Diameter M3,M4,M6,M12,customized etc
Head type Hex, Allen,square,round and other
Material Carbon Steel, High Strength Steel, Stainless Steel, Brass,Iron etc
Surface treatment Hot Galvanizing, Black, Color-Zinc, Blue-White Zinc
Package Plastic bag, Boxes and cartons, Pallets, Customized
Price terms EXW, FOB, CIF, etc.
Payment terms T/T, Paypal, L/C, Western union, etc.
Certifications ISO 9001:2015
Note Free samples but freight cost is paid by customers(when sample is in stock)   Sample fee (when samples need to be customized)

We need more detail as follow. This will allow us to give you an accurate quotation. 
Before offer the price,get the quote simply by completing and submitting the form below:
• Product:__                   
• Measure: _______(Inside Diameter) x_______(Outside Diameter)x_______(Thickness)
• Order Quantity: _________________pcs
• Surface treatment: _________________
• Material: _________________
• When do you need it by? __________________
• Where to Shipping: _______________ (Country with postal code please) 
• Email your drawing ( jpeg, png or pdf, word) with minimum 300 dpi resolution for good clarity.

Drawing

Screw Thread / d M5 M6 M8 M10 M12 (M14) M16 M20 M24 M30 M36
P Pitch 0.8 1 1.25 1.5 1.75 2 2 2.5 3 3.5 4
e min 8.79 11.05 14.38 17.77 20.03 23.35 26.75 32.95 39.55 50.85 60.79
k max 5.1 5.7 7.5 9.3 12 14.1 16.4 20.3 23.9 28.6 34.7
min 4.8 5.4 7.14 8.94 11.57 13.4 15.7 19 22.6 27.3 33.1
n max 2 2.6 3.1 3.4 4.25 4.25 5.7 5.7 6.7 8.5 8.5
min 1.4 2 2.5 2.8 3.5 3.5 4.5 4.5 5.5 7 7
s max 8 10 13 16 18 21 24 30 36 46 55
min 7.78 9.78 12.73 15.73 17.73 20.67 23.67 29.16 35 45 53.8
w max 3.1 3.5 4.5 5.3 7 9.1 10.4 14.3 15.9 19.6 23.7
min 2.8 3.2 4.2 5 6.64 8.74 9.97 13.87 15.14 19.08 23.18
per 1000 units ≈ kg 0.96 1.71 3.87 7.35 11 18.38 22.67 52.74 88.88 186.1 332.9

Product Description

Detailed Photos

Company Profile

Tengri fasteners Group is an OEM Fasteners Manufacturing, Plating/ Finishing and Industrial Production Company. Over 30 years of manufacturing stainless steel fasteners, industry experience and construction of state-of-art facility. We can offer the most common stainless steel fasteners or specially designed fasteners to exceed our customer’s expectations, as our vendors are the best name brands in the industry.

Tengri fasteners group employs more than 3000 employees and consists of 1 lab and software center, 3 wholly owned subsidiary of Factory and 5 warehouse stocking locations. Our extensive products line and our fast and friendly sales representatives are CZPT to satisfy our customer demands.

As a veritable “one- stop shop“, CZPT Fasteners offers same day delivery of in-stock items and a wide a wide variety of supply chair solutions tailored to the needs of our customers. Our custom inventory control programs provide extensive cost saving to our customers.

Factory Images

Certifications

Customers

After Sales Service

a)  Good after-sale service, all questions will be replied within 12 hours.

b)  Customized design is available. ODM&OEM are welcomed.

c)  We can provide free sample, consumer should pay the freight first.

d)  Convenient transportation and fast delivery, all available shipping ways could be     applied, by express, air or sea. 

e)  High quality and most competitive price.

f)  Advanced produce and inspecting equipments.

Packaging & Transportation

FAQ

1.Can I order a small list ?

—Of course, you can.

2.What quote do you offer?
—FOB , CIF and others ways according the your needs.
 
3.How transport?
—Sea Freight, Air Freight and others Express Delivery ways for you.
 
4.What is the quality of your products guarantee?
—We have passed ISO9001:2015 Quality Management System Certification, CQM Quality Management System Certification and IQNet Quality Management System Certification, If the quality doesn’t  accord the standard, you can exchange the goods for free.
 
5.Do you have after-sales service?
—Certainly,you can contact us at any time.

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
screwshaft

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China Best Sales Made in China High Quality Carbon Steel Zinc Plated Black Coating Hex Castle Nut Bolt Screw Hexagon Slotted Nut   with Good qualityChina Best Sales Made in China High Quality Carbon Steel Zinc Plated Black Coating Hex Castle Nut Bolt Screw Hexagon Slotted Nut   with Good quality

China Hot selling Twin Screw Barrel for Extruder with Best Sales

Product Description

      We manufacture barrels for co-rotating twin screw extruders ranging from 12 mm to 350 mm and over. Our manufacturing specializes in barrels for twin screw extruders and is optimized for flexible order handling.

JOINER supplies cylinder barrel suitable for the following extruder products lines :
-APV        -KOBE           -OMC
-Buhler      -KraussMaffei      -Theysohn
-Buss       -Berstorff-          -Toshiba
-Clextral     -Labtech          -USEON
-Lantai          – others
-JSW        -Leistritz    
-Keya        -Maris

Range of Work
Diameter of 12-350mm

Types of  Barrels
Standard for classification: Design geometry           Standard for classification: With inner or not
* Feeding barrel                                                               * Solid barrel
* Closed barrel                                                                 * Barrels with inners
* Vent barrel
* Combi barrel
* Extended degassing barrel
* Combi barrel with backward venting

We offer a broader choice of materials:
Solid barrels
*Nitrided steel barrels            *Tooling steel barrels        *Bimetallic 
Barrel with installed inner
* made of PM-HIP solid          *WR13     
By working closely with customers in choosing optional materials,we can minimize wear and tear and associated costs.

About our Company

Joiner Machinery Co.,Ltd has several years experience in the manufacture and supply of new and refurbished wear parts for all major makes of twin-screw extruders and the Industries involved in plastics industry, chemical industry, powder coating, food food industry, wood plastic etc..
Through close working relationships with our customers we have been CZPT to fulfill their requirements. Flexibility enables us to design and manufacture standard and bespoke components for unique applications. 
Through our highly trained and experienced staff we are CZPT to offer technical support and advice. 
Our strengths are based on many years experience supplying the following:
* Competitive costs per unit of production 
* Fast turn round for collection and delivery on refurbished parts 
* Parts available from stock for a wide range of extruder makes 
* Comprehensive inspection procedure on all parts prior to dispatch 
* A time proven quality service 
* Latest manufacturing techniques and metallurgy, ensuring consistent and reliable performance of parts 
* Customized solutions to meet specific needs.

FRQ
 
1. Q: Are you a factory or trading company? 
 —-A: A factory 
2. Q: Where is your factory located? How can I visit there? 
—–A: Our factory is located in HangZhou, ZheJiang  Province, China, 
1) You can fly to HangZhou Airport directly. We will pick you up when you arrive in the airport; 
All our clients, from domestic or abroad, are warmly welcome to visit us! 
                                             
3.Q: What makes you different with others?
—-A: 1) Our Excellent Service 
 For a quick, no hassle quote just send email to us
 We promise to reply with a price within 24 hours – sometimes even within the hour.
 
2) Our quick manufacturing time
For Normal orders, we will promise to produce within 30 working days.
As a manufacturer, we can ensure the delivery time according to the formal contract.
 
 4.Q: How about the delivery time? 
—-A: This depends on the product. Typically standard products are delivered within 30 days. 
 

  1.  Q: What is the term of payment? 
    —-A: 1) T/T payment;   2) LC;  

 
5.Q: May I know the status of my order?
—-A: Yes .We will send you information and photos at different production stage of your order. You will get the latest information in time. 

 

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Hot selling Twin Screw Barrel for Extruder   with Best SalesChina Hot selling Twin Screw Barrel for Extruder   with Best Sales

China manufacturer Internal Drive Screw Plugs with Collar Cylindrical Thread with Best Sales

Product Description

Customized CNC Machining OEM Precision Machine Parts
Certification: ISO
Working temperature: 0-80
Pressure environment: PN10-16
Surface treatment: polishing
Application: Machine Parts
Material: 420, 431, 304, 316, 45#, 40Cr
Specification: OEM

Basic Information
1. Product specifications and dimensions can be customized by customers;
2. The material can be customized: 420, 431, 304, 316, 45#, 40Cr and other materials;
3. Tolerance: The tolerance is strict, and there are strong measurement and inspection control methods and testing equipment;
4. Hardness: adjustable, hardenable, hardness standards can be customized according to customer needs;
5. Surface treatment: chrome plating, galvanizing, grinding, polishing, carburizing and other surface treatment methods;
6. Processing: CNC processing machinery, CNC heat treatment machinery and other equipment;
7. Testing: professional testing team, professional testing equipment;
8. Marking: laser marking machine processing (marking can be customized according to customer requirements);
9. Packaging and transportation: carton, wooden box (size can be negotiated);

HangZhou Vanxon Machinery Manufacturing Co., Ltd. is located in Xihu (West Lake) Dis.n County, HangZhou City, ZheJiang Province. Founded in 2004, the company is an accessory processing enterprise integrating manufacturing and product sales. The main products include valve parts, auto parts, and can be customized according to customer needs. Now it has more than 70 sets of various types of equipment such as machining centers, CNC lathes, wire cutting, thread rolling machines, gear hobbing machines, centerless grinders, and high-frequency quenching machine tools.
Looking forward to cooperating with your company.

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
screwshaft

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China manufacturer Internal Drive Screw Plugs with Collar Cylindrical Thread   with Best SalesChina manufacturer Internal Drive Screw Plugs with Collar Cylindrical Thread   with Best Sales

China OEM Twin Screw Elements for Food Twin-Screw Extruder Machines with Great quality

Product Description

Extruder Screw Barrel Zsk177 Stainless Steel Twin Screw Cpm10V

Production description:

Production name: Screw element Model Number: 132
Extrusion equipment:    Material: CPM10V
Place of Origin China Application Twin screw extruder machine
Production ability 300m / Per month Diameter 177mm

Co-rotating twin screw elements for 
-APV        -KOBE           -OMC
-Buhler      -KraussMaffei      -Theysohn
-Buss       -Berstorff-          -Toshiba
-Clextral     -Labtech          -USEON
-Lantai          – others
-JSW        -Leistritz    
-Keya        -Maris

Types of the Screw Segments
 Convey Screw Segment
 Mixing Screw Segment
 Kneading Block & Disk
 Transition Screw Element
 Deep groove transfer element
 Screw element for side feeder
 1-flighted,2-flighted,3-flighted screw elements

We offer a broader choice of materials:
For wear application:
 Tool Steel : W6Mo5Cr4V2;
 PM-HIP material : SAM10,SAM26,SAM39,CPM10V,CPM9V
For corrision application:
 Nitrided Steel: 38CrMoAI;
 PM-HIP material : SAM26,SAM39,CPM10V,CPM9V
For wear and corrision application:
 PM-HIP material:SAM26,SAM39,CPM10V,CPM9V
Other materials:
Stainless Steel: 316L,C276 etc.
By working closely with customers in choosing optional materials,we can minimize wear and tear and associated costs.

Our Production Plant

FRQ
 
1. Q: Are you a factory or trading company? 
 —-A: A factory 
2. Q: Where is your factory located? How can I visit there? 
—–A: Our factory is located in HangZhou, ZheJiang  Province, China, 
1) You can fly to HangZhou Airport directly. We will pick you up when you arrive in the airport; 
All our clients, from domestic or abroad, are warmly welcome to visit us! 
                                             
3.Q: What makes you different with others?
—-A: 1) Our Excellent Service 
 For a quick, no hassle quote just send email to us
 We promise to reply with a price within 24 hours – sometimes even within the hour.
 
2) Our quick manufacturing time
For Normal orders, we will promise to produce within 30 working days.
As a manufacturer, we can ensure the delivery time according to the formal contract.
 
 4.Q: How about the delivery time? 
—-A: This depends on the product. Typically standard products are delivered within 30 days. 
 

  1.  Q: What is the term of payment? 
    —-A: 1) T/T payment;   2) LC;  

 
6.Q: May I know the status of my order?
—-A: Yes .We will send you information and photos at different production stage of your order. You will get the latest information in time. 

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
screwshaft

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China OEM Twin Screw Elements for Food Twin-Screw Extruder Machines   with Great qualityChina OEM Twin Screw Elements for Food Twin-Screw Extruder Machines   with Great quality

China Hot selling Electronic Accessories Brass Round Head Thread Customized Screw with Great quality

Product Description

Hanyee Metal is a combo of manufacrturing and trading for the bespoke fasteners and metal components.

 

Standard DIN, BS, ANSI, JIS, GB and so on
Head Type Flat Head,Pan Head, Countersunk Head, Round Cone Head, Hex Head, Round with Washer Head, Pan with Washer Head and so on, as customer requires
Raw Material 1, Carbon Steel: C1008, C1571, C1571, 10B21
  2, Aluminum
  3, Steel: 35K, 45K, 10B21
  4, Iron
  5, Stainless Steel: SS201, SS301, SS303, SS304, SS316, SS416, SS420
  6, Brass:C36000, C37700, C38500, C27200, C28000….
  7, Copper 
Surface finish Zinc Plated, Ni Plated, Brass Plated
  Tin Plated, Black Plated, Copper Plated. 
  hot-working, make hardness up to 6.8,8.8, 9.8, 10.9, 12.9 grade
Shank Diameter 1.5mm-18mm
Process Mainly Cold-Heading, CNC,Stamping,Die-Casting
Certifications ISO9001,ROHS,SGS 
Sample Availability Samples are available.
MOQ We accept test orders of small quantity. 
Price terms FOB, CIF, CFR, EXW, and other trade terms.
Lead Time 15-30days, according to customer’s order qty and detailed requirements
Packing 500-2000pieces in a Polybag, then into a carton box, finally into a pallet, or customized
  Size of the caton box: 33CMX25CMX15CM 
  Size of the Pallet: 100CMX80CMX15CM, 16 Pallets in 1 20’Container 
  Size of the Pallet: 85CMX75X15CM,18 Pallets in 1 20’Container
Warranty Policy We confirm our qualities satisfy to 99.9%, and have 6-month quality warranty 
After Sales Service We will follow up the requst strictly for customers, and will help customers solve problems after sale. 

Q: Please send your price list for our reference.
A: We do not have standard price list because we produce according to customer design.
We can provide the quotation for your inquiries in a shortest possible time.

Q:Please quote the price for me
A: Our standard response time is 2 working hours, once you confirm the demand and drawing we shall provide the quote within 12 working hours.

Q:Can I get some sample?
A: Sure. We believe sample order is a good way to start our cooperation.
  If it is a standard product, it would be for free but freight on your account.
  If customized, we shall prepare the sample after receipt of development cost.

Q: Have FASTENERS 100% assembled well in stock?
A: Some of standard size is in stock. Most is OEM item out of stock.

Q: Could I use my own LOGO or design on goods?
A: Yes, Customized logo and design on mass production are available.

Q: What is the delivery time?
A: Our lead time for samples is 1 week; 15-30 days for mass production. It is usually according to the quantity and items.

Q:What payment do you accept?
A: We accept T/T, West Union,L/C,Trade Assurance in Alibaba.

Q: Can I trust you?
A: Absolutely! We are “Made In China” & “Alibaba” verified supplier.

Q: May I visit your factory?
A: You are welcome to visit us anytime. We can also pick you up from nearest airport and Train station.

 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China Hot selling Electronic Accessories Brass Round Head Thread Customized Screw   with Great qualityChina Hot selling Electronic Accessories Brass Round Head Thread Customized Screw   with Great quality

China high quality 5 Axis Anodizing Aluminium 6061 CNC Milling Part for Binding Screw (F-168) with high quality

Product Description

5 axis anodizing aluminium 6061 cnc milling part for binding screw (F-168)

Application: Machinery, Appliance, Optoelectronic, Digital electronics, Medical packaging instrument, Automobile, Motorcycle, Bicycle,etc.

Products Materials,Surface Finish & Process:
Materials We Use:

  • Stainless Steel:

AISI 303, 304, 316, 316L, 430F, 440C, 630

  • Aluminum:

ASTM 380, 2017, 2011, 2571, 5051, 5052, 5056, 6013, 6061, 6063, 6082, 7075, ADC10 (AISi8Cu3) , Extruded/Extrusion Aluminum is available           

  • Carbon and Alloy Steel:                               

AISI 1008, 1571, 1015, 1571, 1030, 1045, 1060, 12L14, 1144, 1215, 4140, 4340, SCM440

  • Brass:

CA260, C36000, C3601, C3602, C3603, C3604, C37700, C3771,Hpb59-1,H62,C27200(CuZn37),Etc.

  • Plastic:

POM, NYLON, NORYL, Acetal, Delrin, Polycarbonate, PEEK, Acrylic, ABS,Bakelite

  • Special Material:

Titanium 6AL-4V, Carpenter Invar 36, Remko B, Nickel Silver C79200, ASM 4640 (Aluminum Bronze), Hastelloy C276 Nickel Alloy   

Finish We Do:

* Nickel Plating / Electroless Nickel Plated / Zinc Plated / Hard Chrome Plating
* Anodizing / Hard Anodized
* Black Oxide
* Passivation
* Sand Blasting 
* Laser Marking
* Powder Coating
* Chem Film
* Vacuum Deposited Aluminum (Mirror Finish) / #4 Brushed Finish /  #8 Mirror Finish

Processing Type: 

CNC turning, CNC Lathing, CNC Milling, Drilling,Grinding,Wire EDM cutting,etc.

Products Processing Size:

Maximum Processing Diameter: 150mm
Maximum Processing Length:300mm
Maximum Processing Depth:120mm
Surface roughness: Ra 0.3um
Processing Tolorance:0.007mm
Applied Software:Pro/E,Auto CAD, Solid Works,IGS,UG,CAD/CAM/CAE
Packing material we use(According to customer’s request):Eco-friendly PP bag, EPE foam, carton box, wooden box, paper, blister film, bubble film,plastic web,Anti-Corrosion Bags,etc
Trial Sample Delivery Time:7-14days
Mass Batch Production Delivery Time: 30days, negotiable according to the order quantity

We do the products according to customer’s drawing with materials request, surface finish request. ODM & OEM products are welcome!

Quality Control:

We control our products quality by different test instrument and machines. All products should be do inspection according to customer’s request before packing.

PACKING & SHIPPING:

We pack our products according to customer’s request by different materials. We will ship our products by courier, by air or by sea.

FAQ:

Q: Are you a trading company or a manufacture?
A: We are a factory.

Q: Will you supply samples?How long is your sample and production lead time?
A: For samples, we could offer free sample.generally 1-2 weeks, it depends on your parts type. For mass batch production , 2-4 weeks normally, negotiable according to order quantity. 

Q: What ways can i know how my products is going on without visiting your company?
A: We will offer a detailed production schedule and send you weekly report to showing where we are.

Q: How you manage the quality?
A: We are an ISO certificated machining supplier, an effective in-process quality control flow chart was available in production as showed above. If you need more information, just feel free to contact with

Q:how do you give me the price?
A:we can quote price according to your drawning design,material,finish and give you the best price.

Q:how is your company payment terms?
A: byT/T,L/C,and so on,usually,50% deposit,50% balance before the shipment.

 

Screw Shaft Types

A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:
screwshaft

Size

A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
screwshaft

Material

The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each 1 has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best 1 depends on the application.
The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.

Function

The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
Screws can be classified into 2 types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
screwshaft

Applications

The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.

China high quality 5 Axis Anodizing Aluminium 6061 CNC Milling Part for Binding Screw (F-168)   with high qualityChina high quality 5 Axis Anodizing Aluminium 6061 CNC Milling Part for Binding Screw (F-168)   with high quality

China best Slotted Rod Cylinder Head Lead Screws Locking Screw Pilot Screw with Hot selling

Product Description

The role of lead screw is not allowed to start a private, the goods play a protective role. Once the seal is properly locked, it can not be opened unless the violence is broken, and the damaged seal can not be reused.
Applicable scope:
1>railway, aviation, oil, customs, port, postal and other logistics industry.
2>mining, highway, finance, chemical, petroleum, container, pharmaceutical and other industries.
3>gas meter, instrument, table box and so on.

Product Description:

Product Name Anti-theft screw / Safety screw
 
Standard ANSI / BS / DIN / GB / ISO / JIS / BSW
 
Material (Available) Iron, Carbon steel, Stainless steel, Brass, Bronze, Aluminum, Alloy steel or Customer Specified etc.
 
Screw head shapes  pan, dome(button), round/truss(mushroom), flat(countersunk), oval(raised head), Hex, round with washer head, pan with washer head, etc,
 
Screw drives type Slot, Cross, Phillips ( PH ), Frearson, French recess, JIS B 1012, Mortorq, Pozidriv ( PZ ), SupaDriv ( PZ ), Square, Robertson, Hex, 12-point flange, Hex socket ( Allen ), Security hex socket ( pin-in-hex-socket ) Torx ( T& TX ), Security Torx ( TR ), Torx Plus (TR), TA, Tri-point, Tri-groove, Tri-wing, Torq-set, Spanner head (pig nose, TH), Clutch A, Clutch G, One-way, Double-square, Triple-squaare (XZN), Polydrive, 12-spline flange, Double hex, Bristol, Phillips/Slotted, Quadrex, Pentalobe, External Torx, Line female, Line female tamper etc.
 
Thread type Metric/Inch/American system
 
Metric thread (outside):4h,6h,6g
 
Metric thread (inside):5H,6H,7H
 
Inch thread (outside):1A,2A,3A
 
Inch thread (inside):1B,2B,3B
 
Common thread AB/A/B/BP/C/D/F/G/T/BF/BT/U/Triangular thread
 
Surface Finished Zinc(Yellow,White,Blue,Black),Hop Dip Galvanized(HDG) phosphorization,tin-plated, chrome plated, sandblast and anodize, Black Oxide,Geomet,Dacroment,anodization,chromate, Nickel plated,Zinc-Nickel plated,dacromat, plain, sandblast and anodize, mechanical coated and RoHS
 
Hot-working, make hardness up to 8.8, 10.9, 12.9, A2-70, A480
 
Heat Treatment Normalizing / Spheroidizing / Tempering / Hardening / Stress Relieving
 
Certifications SGS/ROSH (By provided by third-party testing agencies)
 
Applied Area Building, Machinery, Electronic, Furniture etc.
 
Payment Terms T/T 30% in Advance, 70% Before Shipment
 
MOQ Based on the material required by the customer
 
Packing
 
25kgs/carton or 1000 pcs/per box or as customers’ request.
lead time 7-40days, according to customer’s order qty and detailed requirements
 
Shipping Port HangZhou, China
 

Product photo
 

Our company has a strong production capacity,we sale professional fastener and fittings.Our products meets the international quality system,such as ANSI and  BS. We provide the high quality and professional fastener for construction steel, car, machinery and equipment, energy,furniture, ship, railway and so on. In the whole production process, We have professional engineers to monitor the quality,we can guarantee the quality of our product.We are committed to continuously improvement and innovation, to meet customer requirements, And work closely with our partners to provide qualified parts, competitive prices and best service to every customer. We would like to thank you for your interest in our company and hope that our website will help you. If you need more information, please contact our sales department.
Screw,bolt,nut,manufacturer/supplier in china,offering carbon steel hexagonal head combined assembly screws for fan parts,Non-standard slotted fillster screw for building,non-standard slotted fillster screw and so on.

If you are interested in any of our products, please free feel to contact us. More information of our products will be forwarded to you upon receipt of your specific inquiry.

 

Screw international standard
ITEM DIN-STHangZhouRD ISO-STHangZhouRD GB-STHangZhouRD DESCRIPTION IN ENGLISH
1 DIN1 ISO2339 GB117 taper pins
2 DIN7 ISO2338 GB119-86 parallel pins
3 DIN84 ISO1207 GB65-85 slotted cheese head screws
4 DIN85 ISO1580 GB67-85 slotted pan head screws
5 DIN93   GB854 tab washers
6 DIN94 ISO1234 GB91 split cotter pins
7 DIN95   GB101 slotted raised csk head wood screws
8 DIN96   GB99 slotted round head wood screws
9 DIN97   GB100 slotted countersunk head wood screws
10 DIN125-A ISO708 GB97.1-85 plain washers
11 DIN125-B ISO7090 GB97.2-85 mediun washers
12 DIN126 ISO7091   plain washers
13 DIN127-A   GB7244 spring lock washers,tang ends
14 DIN127-B   GB93-87 spring lock washers,square ends
15 DIN128-A   GB7245-87 single coil spring lock washers
16 DIN137-A     curved spring washers
17 DIN137-B   GB955 wave spring washers
18 DIN186   GB37-88 t-head bolts with square neck
19 DIN188     t-head bols with double nip
20 DIN258 ISO8737   taper pins with threaded end
21 DIN261     t-head bolts
22 DIN315AF     wing nuts amercia form
23 DIN315DF   GB62-88 wing nuts germany form
24 DIN316AF     wing screws amercia form
25 DIN317DF     wing screws germany form
26 DIN3179     ball knobs
27 DIN404   GB832-88 slotted capstan screws
28 DIN417 ISO7435 GB75-85 soltted set screws with full dog point
29 DIN427 ISO2342 GB73-85 slotted set screws with chamfered end
30 DIN431   GB808-88 pipe nuts with thread
31 DIN432   GB856-88 external tap
32 DIN433 ISO7092 GB848-95 washers for cheese head screws
33 DIN434   GB852-88 square taper washers for u-sections
34 DIN435   GB852-88 square taper washers for i-sections
35 DIN436     square washers
36 DIN438 ISO7436 GB74-85 soltted set with cup point
37 DIN439 ISO4035 GB6172-86 hexagon thin nuts
38 DIN439 ISO8675 GB6173-86 hexagon thin nuts
39 DIN440 ISO7094   rounds washers for wood constructions
40 DIN443     sealing cap, push-in type
41 DIN444   GB798-88 eye bolts form
42 DIN462     internal tab washers
43 DIN463   GB855-88 washers with two taps
44 DIN464   GB834-88 knurled thumb screws with collar
45 DIN465     slotted knurled thumb screws with collar
46 DIN466   GB806-88 knurled thumb nuts with collar
47 DIN467   GB807-88 knurled thumb thin nuts
48 DIN470     sealing washers
49 DIN471   GB894.1-86 retaining rings for shafts(external),circlips
50 DIN472   GB893.1-86 retaining rings for bores(internal),circlips
51 DIN478     square head bolts with collar
52 DIN479     square hea bolts with half dog point
53 DIN480     square head bolts with collar,half dog point and rounded end
54 DIN508     t-slot nutsiso299
55 DIN525     single end studs
56 DIN529   GB799-88 masonry bolts
57 DIN546   GB817-76 slotted round nuts
58 DIN547   GB815-88 round nuts with drilled holes in one face
59 DIN551 ISO4776 GB73-85 slotted sit screws with flat point
60 DIN553 ISO7434 GB71-85 slotted set screws with cone point
61 DIN555 ISO4034   hexagon nuts
62 DIN557   GB39-88 -csquare nuts
63 DIN558 ISO4018   hexagon screws
64 DIN561     hexagon set screws with full dog point
65 DIN52     bsquare nuts without bevel(pressed nuts)
66 DIN571   GB102-86 hexagon head wood screws (coach screws)
67 DIN580 ISO3266 GB825-76 lifting eye bolts
68 DIN582     lifting eye nuts
69 DIN601 ISO4016   hexagon bolts
70 DIN603 ISO8677 GB14-88 mushroom head square neck bolts (carriage bolts)
71 DIN604     flat countersunk nib bolts
72 DIN605     flat countersunk long square neck bolts
73 DIN607     cup head nib bolts
74 DIN607     flat countersunk shout square neck bolts
75 DIN609     hexagon fitted bolts,long thread
76 DIN610     hexagon fitted bolts,short thread
77 DIN653   GB835-88 knurled thumb screws thin type
78 DIN660 ISO1051 GB867-86 round head rivets
79 DIN661 ISO1051 GB869-86 contersunk head rivets
80 DIN662 ISO1051   raised contersunk head rivets
81 DIN674 ISO1051   mushroom head rivets
82 DIN703     adjusting rings,heavy range (shafting collars)
83 DIN705   GB816-88 adjusting rings,light range(shafting collars)
84 DIN741     wire rope clips
85 DIN787T ISO299   t-slot screws
86 DIN835   GB900-88 studs-metal(end=2d)
87 DIN906     hexagon socket pipe plugs,conical thread
88 DIN908     hexagon socket screw plugs,cyl.thread
89 DIN909     hexagon head pipe plugs,conical thread
90 DIN910     hexagon head screw plugs,cyl.thread
91 DIN911 ISO2936   socket wrenches
92 DIN912 ISO4762 GB70-85 hexagon socket cap screws
93 DIN913 ISO4026 GB77-85 hexagon socket set screws with flat piont
94 DIN914 ISO4571 GB78-85 hexagon socket set screws with cone point
95 DIN915 ISO4571 GB79-85 hexagon socket set screws with dog point
96 DIN916 ISO4571 GB80-85 hexagon socket set screws with cup point
97 DIN917     hexagon cap nuts
98 DIN920     slotted short cheese head screws
99 DIN921   GB838-88 slotted large cheese head screws
100 DIN923   GB830-88 slotted pan head screws with shoulder
101 DIN927     slotted shoulder screws
102 DIN928   GB/T13680-92 square weld nuts
103 DIN929   GB/T13681-92 hexagon weld nuts
104 DIN931 ISO4014 GB5782-86 hexagon head screws
105 DIN933 ISO4017 GB5783-86 hexagon head screws
106 DIN934 ISO4032 GB6170-86 hexagon full nuts
107 DIN934 ISO8673 GB6171-86 hexagon full nuts
108 DIN935 ISO7035 GB6178-86 hexagon slotted and castle nuts
109 DIN936 ISO4035 GB6172.1-86 hexagon thin nuts
110 DIN937 ISO7038 GB6181-86 hexagon thin slotted and castle nuts
111 DIN938   GB897-88 studs metal(edn=1d)
112 DIN939   GB898-88 studs metal (end=1.25d)
113 DIN940     studs metal (end=1.5d)
114 DIN960 ISO8765 GB5785-86 hexagon head bolts,metric fine pitch thread
115 DIN961 ISO8676 GB5786-86 hexagon head bolts ,metric fine pitch thread
116 DIN962     additional shapes and versions for bolts
117 DIN963 ISO2009 GB68-85 slotted countersunk head screws
118 DIN964 ISO2571 GB69-85 slotted raised countersunk oval head screws
119 DIN965 ISO7046 GB819-85 cross recessed countersunk head screws
120 DIN966 ISO7047 GB820-85 cross recessed raised countersunk head screws
121 DIN970     hexagon nuts type-1
122 DIN971     hexagon nuts type-2
123 DIN972 ISO8674 GB6176-86 hexagon nuts with fine thread
124 DIN975   GB15389-94 threaded rods(studdings_
125 DIN976     threaded pins(stud bolts)
126 DIN979     hexagono thin slotted and castle nuts
127 DIN980 ISO7199 GB6184-86 prevailling torque type hexagon nuts,all metall nuts
128 DIN981 ISO2982 GB812-88 locknuts
129 DIN982 ISO7040 GB889.1-86 prevailling torque type hexagon nuts,heavy type,with nylon insert
130 DIN985 ISO1571 GB6172.2-86 prevailling torque type hexagon nuts,heavy type,with nyllon insert
131 DIN986     prevailling torque typedomed capnuts with nylong insert
132 DIN988     shim rings
133 DIN1052     washers for timber connectors
134 DIN1151     round plain head nails
135 DIN1440 ISO8738   plain washers for clevis pins(a)
136 DIN1441     plain washers for clevis pins
137 DIN1444 ISO2341   clevis pins with head
138 DIN1471 ISO8744 GB/T13829.2 grooved pins,taper grooved
139 DIN1472 ISO8745 GB/T13829.2 grooved pins,taper grooved half length
140 DIN1473 ISO8740   grooved pins,parallel grooved full length
141 DIN1474 ISO8741   grooved pins,reserve grooved half length
142 DIN1475 ISO8742   grooved pins,centre grooved
143 DIN1476 ISO8746 GB/T13829.3 grooved pins with round head
144 DIN1477 ISO8747   grooved pins with countersunk head
145 DIN1479     turnuckles(centre parts),made out of hexagon bar
146 DIN1480     turnuckles with eye bolt and hook bolt
147 DIN1481 ISO8752 GB879-86 spring pins,heavy type
148 DIN1587   GB802-88 hexagon domed cap nuts
149 DIN1804     slotted round nuts for hook spanner
150 DIN1816     round nuts with set holes
151 DIN2093     disc springs
152 DIN3017     hose clamps
153 DIN3404     lubricating nipples,button head
154 DIN3567     shackles for conduilts
155 DIN3570     stirrup bolts(u-bolts)
156 DIN6319   GB849-88 spherical washers,conical seats
157 DIN6325 ISO8734   parallel pins
158 DIN6330   GB56-88 hexagon nuts,1.5d
159 DIN6331   GB6177-86 hexagon nuts ,1.5d with collor
160 DIN6334     hexagon nuts,3d
161 DIN6797-a   GB862.1-87 external teeth lock washers
162 DIN6797-I   GB861.1-87 internal teeth lock washers
163 DIN6798-A   GB862.2-87 external teeth serrated lock washers 
164 DIN6798-I   GB861.2-87 internal teeth serrated lock washers
165 DIN6799   GB896-76 retaining rings for shafts(e-rings),circlips
166 DIN6885 ISO773/2491   parallel keys(forma)
167 DIN6888 ISO3912   woodruff deys
168 DIN6899     thimbles
169 DIN6900   GB9074.1-.17 screws and washers assemblies
170 DIN6901   GB9074.18-.23 tapping screws and washers assemblies
171 DIN6912     hexagon socket head cap screws with hole,low head
172 DIN6914     hexagon head bolts with large head(friction grip bolts)
173 DIN6915     hexagon nuts with large wideth across flat(friction grip nuts)
174 DIN6916     round washers for friction grip bolts
175 DIN6917     spuare taper washers for friction grip bolts on t-sections
176 DIN6923 ISO4161 GB6177-86 hexagon flange nuts
177 DIN6925 ISO7042 GB6185.1-2000 prevailing touque type hexagon nuts,all metallic nuts
178 DIN7337   GB12617/12618 blind rivets
179 DIN7338   GB875/975-86 rivets for brake and clutch lining
180 DIN7343 ISO8750   spiral pins
181 DIN7346 ISO13337   spring pins,light type
182 DIN7349     washers for bolts with heavy type spring pins
183 DIN7500     thread forming screws for iso-metric thread
184 DIN7504     self-drilling tapping screws
185 DIN7513     thread cutting screws
186 DIN7516     thread cutting screws cross recess
187 DIN7965     tee nuts with pronge
188 DIN7968   GB1228/1229/1230 hexagon head fitted bolts for steel structures
189 DIN7971 ISO1481 GB5282-85 pan head tapping screws with slot
190 DIN7972 ISO1482 GB5283-85 countersunk flat head tapping screws with slot
191 DIN7973 ISO1483 GB5284-85 raised countersunk oval head tapping screws with slot
192 DIN7976 ISO1479 GB5285-85 hexagon tapping screws
193 DIN7980 ISO8738   spring lock washers for screws with cylindrical heads
194 DIN7981 ISO7049 GB845-85 pan head tapping screws with cross recessed
195 DIN7982 ISO7050 GB846-85 countersunk flat head tapping screws with cross recessed
196 DIN7983 ISO7051 GB847-86 raised countersunk oval head tapping screws with cross recessed
197 DIN7984     hexagon scocket head cap screws with,reduced head
198 DIN7985 ISO7045 GB818-85 pan head screws with cross recessed
199 DIN7989   GB1230-84 washers for steel structures
200 DIN7990   GB1229-84 hexagon head bolts for steel structures
201 DIN7991 ISO10642   hexagon socket countersunk head screws
202 DIN7993   GB895.2-86 roundwire snap rings for shafts
203 DIN7995   BG952-86 cross recessed raised countersunk head wood screws
204 DIN7996   BG950-86 cross recessed round head wood screws
205 DIN7997   GB951-86 cross recessed countersunk head wood screws
206 DIN8140     ciol inserts,coarse,fine thread,silf locking
207 DIN9571 ISO7093 GB96-85 washers,outside diameter appro.3d
208 DIN11571     spring cotter for a bolt
209 DIN13257     belting bolts (elevator bolts)
210 DIN18182     dry wall screws
211 DIN28129   GB63-88 lifting nuts(eye nuts)
212 DIN7 0571   GB858-88 tab washers for slotted round nuts

FAQ:
1) Q:What’s your product range?
A:  Our product range includes screws, nuts, knobs, bolts, washers, rivet, anchor and CNC parts. We strictly implement various quality standards like GB, ISO, DIN, JIS, AISI NFE and BSW.Non-standard products also accepted.

2)Q:Are you a Trading company or a Manufacturer?
A: We are an Industry&Trade Company .

3) Q:Why should I choose you? What’s your advantages? Industries you are serving?
A: We are a professional manufacturer and have 9 years production and management experience in the field of fasteners .
We can provide our customers with a good solution in the area of production design, production process,packaging and after-sale service.Customer satisfaction is our sole pursuit.
 
4) Q:Which industry field are your product is suitable used in ?
A:Our products are  widely use in machine assembling, electronics, constructional engineering furniture cabinets, etc.

Customer Service
· 1. Well trained and experienced staffs at your service. 
· 2. Short lead time. 
· 3. International standard matched
· 4. Non-standard / standard / OEM / ODM / customized service provided. 
· 5. Small Quantity available. 
· 6. Designed in accordance with customers’ request. 
· 7. Packed and delivered by customers’ requirement.

Any more questions or demands, pls feel free to contact me!
 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China best Slotted Rod Cylinder Head Lead Screws Locking Screw Pilot Screw   with Hot sellingChina best Slotted Rod Cylinder Head Lead Screws Locking Screw Pilot Screw   with Hot selling

China OEM U. S. Customized Precision AISI 316L CNC Machined Shoulder Screw for Medical Equipment (F-234) with Good quality

Product Description

U.S. customized precision AISI 316L cnc machined shoulder screw for medical equipment (F-234)

Application: Machinery, Appliance, Optoelectronic, Digital electronics, Medical packaging instrument, Automobile, Motorcycle, Bicycle, Aerospace,etc.

Machining Capabilities,Products Materials,Surface Finish :

Machining Capability: 

  • Swiss Turning
  • CNC Turning & Chucking
  • CNC Lathing
  • CNC Milling
  • Honing
  • Grinding
  • Secondary Machining
  • Brazing
  • Soldering
  • Magnafluxing
  • Bending
  • Slotting
  • Knurling
  • Threading
  • Crimping
  • Assembly
  • Heat Treating
  • Plating
  • Zone Annealing
  • Wire EDM cutting

Products Processing Size:

Maximum Processing Diameter: 150mm
Maximum Processing Length:300mm
Maximum Processing Depth:120mm
Surface roughness: Ra 0.3um
Processing Tolorance:0.007mm
Applied Software:Pro/E,Auto CAD, Solid Works,IGS,UG,CAD/CAM/CAE
Packing material we use(According to customer’s request):Eco-friendly PP bag, EPE foam, carton box, wooden box, paper, blister film, bubble film,plastic web,Anti-Corrosion Bags,etc
Trial Sample Delivery Time:7-14days
Mass Batch Production Delivery Time: 30days, negotiable according to the order quantity

We do the parts according to customer’s drawing in 2D (PDF format) and 3D  or CAD stating order quantity, material request, material hardness request,surface roughness request, surface finish request. ODM & OEM parts are welcome!

Materials We Use:

  • Stainless Steel:

AISI 303, 304, 316, 316L, 430F, 440C, 630

  • Aluminum:

ASTM 380, 2017, 2011, 2571, 5051, 5052, 5056, 6013, 6061, 6063, 6082, 7075, ADC10 (AISi8Cu3) , Extruded/Extrusion Aluminum is available           

  • Carbon and Alloy Steel:                               

AISI 1008, 1571, 1015, 1571, 1030, 1045, 1060, 12L14, 1144, 1215, 4140, 4340, SCM440

  • Brass:

CA260, C36000, C3601, C3602, C3603, C3604, C37700, C3771,Hpb59-1,H62,C27200(CuZn37),Etc.

  • Plastic:

POM, NYLON, NORYL, Acetal, Delrin, Polycarbonate, PEEK, Acrylic, ABS,Bakelite

  • Special Material:

Titanium 6AL-4V, Carpenter Invar 36, Remko B, Nickel Silver C79200, ASM 4640 (Aluminum Bronze), Hastelloy C276 Nickel Alloy   

Finish We Do:

* Nickel Plating / Electroless Nickel Plated / Zinc Plated / Hard Chrome Plating
* Anodizing / Hard Anodized
* Black Oxide
* Passivation
* Sand Blasting 
* Laser Marking
* Powder Coating
* Chem Film
* Vacuum Deposited Aluminum (Mirror Finish) / #4 Brushed Finish /  #8 Mirror Finish

QUALITY CONTROL:

We control our products quality by different test instrument and machines. All products should be done inspection according to customer’s request before packing.

PACKING & SHIPPING:

We pack our products according to customer’s request by different materials. We will ship our products by courier, by air or by sea.

FAQ:

Q: Are you a trading company or a manufacture?
A: We are a factory.

Q: Will you supply samples?How long is your sample and production lead time?
A: For samples, we could offer free sample.generally 1-2 weeks, it depends on your parts type. For mass batch production , 2-4 weeks normally, negotiable according to order quantity. 

Q: What ways can i know how my products is going on without visiting your company?
A: We will offer a detailed production schedule and send you weekly report to showing where we are.

Q: How you manage the quality?
A: We are an ISO certificated machining supplier, an effective in-process quality control flow chart was available in production as showed above. If you need more information, just feel free to contact with

Q:how do you give me the price?
A:we can quote price according to your drawning design,material,finish and give you the best price.

Q:how is your company payment terms?
A: byT/T,L/C,and so on,usually,50% deposit,50% balance before the shipment.

Q:What’s your main export market?
A: Our main export market is European countries (Germany,Finlan,Italy,Spain,Poland, Swizerland,etc) and Amerian countries (U.S.A.,Canada, Brazil).

Welcome to contact us:

Miss Sunny Deng

 

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China OEM U. S. Customized Precision AISI 316L CNC Machined Shoulder Screw for Medical Equipment (F-234)   with Good qualityChina OEM U. S. Customized Precision AISI 316L CNC Machined Shoulder Screw for Medical Equipment (F-234)   with Good quality

China wholesaler Single Screw Gearbox Speed Reducer Transimision Reduction CZPT with Best Sales

Product Description


company show:

ZLYJSingle -screw Plastic Extruder Gearbox Series

ZLYJ gearbox series are transmission devices, which are specially designed for single -screw extruder with high precision, hard gear surface, accompany with thrust, Adopting the technical speciations stipulated in JB/T9050.1-1999, all CZPT gearbox are designed accordingly.
Main features:
1. The material of gear is the high strength alloy steel. It is manufactured by carburizing ang quenching (and other heat treatment ), grinding processing at last. The gear is in high precision(6 grade)and high hardness(reach HRC54-62). Besides, it features low noise when operation.
2. It contains high bearing ability thrust which is performed reliable and can withstand larger axial thrust.
3. All the item are treatment by force lubrication and cooling system except very small speciations products.
4. CZPT series gearbox is adopted by six-side processing box. Its normal installation is horizontal, but also can be changer to vertical installation according to customer requirement.
5. Efficiency transmission, low noise long operation time.

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China wholesaler Single Screw Gearbox Speed Reducer Transimision Reduction CZPT   with Best SalesChina wholesaler Single Screw Gearbox Speed Reducer Transimision Reduction CZPT   with Best Sales