Product Description
Best price plastic nylon6 nylon66 conveyor screw
Description:
Nylon PA6 Sheets & Rods that made the with 100% Virgin Raw Material by HangZhou Engineering Plastics Industries (Group) Company, has the best performance, such as: very tough, even at low temperatures, and high hardness in the surface, toughness, mechanical lower shock, and abrasion resistance. Combined with these characteristics and good insulation, and chemical properties, it has become common-level materials. Its widely used in a variety of mechanical structures and spare parts. Nylon PA6 products that made by HangZhou Engineering Plastics Industries (Group) Company, has the higher hardness, rigidity, a good resistance to wear and heat deflection temperature.
Advantages:
1. Good Tensile strength;
2. High impact and notching impact strength;
3. High heat deflection temperature ;
4. High strength and stiffness;
5. Good glide and limp home characters;
6. Good chemical stability against organic solvents and fuels;
7. Resistant to thermal aging (applicable temperature between -50°C and 110°C;
8. Size alternation by humidity absorption must be considered;
Application:
1. Nylon PA6 Products that made by HangZhou Engineering Plastics Industries (Group) Company is widely substituted for wear parts of mechanical equipment, or used as quick-wear parts of equipment instead of copper and alloy;
2. Shaft sleeve, bearing bush, lining, CZPT plate, gear;
3. Worm gear, roller copper CZPT rail, piston ring, seal ring, slide block;
4. Spheric bowl, impeller, blade, cam, nut, valve plate,
5. Pipe, stuffing box, rack, belt pulley, pump rotor, etc.
Main Properties of MC Nylon
Property | Item No. | Unit | MC Nylon (Natural) | Oil Nylon+Carbon (Black) | Oil Nylon (Green) | MC901 (Blue) | MC Nylon+MSO2 (Light black) |
|
Mechanical Properties | 1 | Density | g/cm3 | 1.15 | 1.15 | 1.135 | 1.15 | 1.16 |
2 | Water absorption (23ºC in air) | % | 1.8-2.0 | 1.8-2.0 | 2 | 2.3 | 2.4 | |
3 | Tensile strength | MPa | 89 | 75.3 | 70 | 81 | 78 | |
4 | Tensile strain at break | % | 29 | 22.7 | 25 | 35 | 25 | |
5 | Compressive stress(at 2%nominal strain) | MPa | 51 | 51 | 43 | 47 | 49 | |
6 | Charpy impact strength (unnotched) | KJ/m2 | No break | No break | ≥50 | No BK | No break | |
7 | Charpy impact strength (notched) | KJ/m2 | ≥5.7 | ≥6.4 | 4 | 3.5 | 3.5 | |
8 | Tensile modulus of elasticity | MPa | 3190 | 3130 | 3000 | 3200 | 3300 | |
9 | Ball indentation hardness | N/mm2 | 164 | 150 | 145 | 160 | 160 | |
10 | Rockwell hardness | – | M88 | M87 | M82 |
Material: | PA |
---|---|
Type: | Hexagon Head |
Groove: | Word |
Connection: | Common Bolt |
Head Style: | Round |
Standard: | DIN, GB, ANSI, BSW, JIS, GOST |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Screw Shaft Types
If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.
Machined screw shafts
Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find one to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
Ball screw nuts
If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the two ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These two features ensure that the ball and the nut meet at two points. You’ll be amazed by the results of the work of these ball screw nuts.
Threaded shank
Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress two pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as one with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is eight mm in diameter but has a thread pitch of one mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.
Round head
A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to one mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
Self-locking mechanism
A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.
editor by CX 2023-11-13
China Good quality Fowl Chicken Manure Auger Bulk Material Handling Screw Conveyor System shaft collar with grub screw
Product Description
High Capacity Carbon Steel Sludge Shaftless Screw Conveyor
Description:
Shaftless screw conveyors mainly for: sticky materials (sludge, mud cakes), entangling materials (living garbage, food waste), bulk materials (living garbage, etc.)
The shaftless screw conveyor developed by Ever Lucky Machinery has a novel and reasonable structure, advanced technical specifications, good sealing performance, strong applicability, low noise of the whole machine, convenient operation and maintenance, and flexible arrangement of inlet and outlet ports. According to different working conditions, different types of shaftless screw conveyors are selected. The model of the shaftless screw conveyor is represented by WLS. The shaftless screw conveyor has a wide range of anti-winding applications. The following is the application scope of the shaftless screw conveyor.
Conveying features:
Shaftless screw conveyors are mainly used in industries such as chemical, food, medicine, paper making, beverages, and environmental protection to deliver highly viscous materials, paste-like viscous materials (such as chemical raw materials, waste pulp, malt, sludge, etc.) and Easy-wound material with unique advantages.
The advantages of the shaftless screw conveyor:
1, with environmental characteristics. Because the conveyor is a totally enclosed design, it is difficult for the material to receive contamination during the transport process.
2. Compared to the shaft screw conveyor, the delivery volume is 1.5 times that of the shaft conveyor with the same diameter.
3. Blockages rarely occur during work.
4, the transmission distance up to 60 ~ 70m.
5, generous appearance, while saving space, easy to operate, reasonable price.
WLS shaftless screw conveyor Using requirements:
a. The WLS non-shaft screw conveyor shall be started without load, ie it shall start when there is no material in the casing. After starting, it can feed to the WLS non-shaft screw conveyor.
b. When WLS non-shaft screw conveyor is initial feeding, the feeding amount should be gradually increased until it reaches the rated conveying capacity, and the feeding material should be uniform, otherwise it will easily cause the accumulation of conveying material, overload of the drive device, and make the entire WLS shaftless Screw conveyor damaged.
c. In order to guarantee the requirements of WLS non-shaft screw conveyor without load, WLS non-shaft screw conveyor should stop feeding before stopping, so the material in WLS shaftless screw conveyor casing can stop running after it is completely conveyed.
d. The hard material shall not be mixed into the conveyed material to avoid screw jamming and damage to the WLS shaftless screw conveyor.
e. Always check the working status of each part of the WLS shaftless screw conveyor during use and pay attention to whether the fasteners are loose. If the parts are found to be loose, the screws should be tightened immediately to make them resolidified.
f. The cover of the WLS shaftless screw conveyor should not be removed when the machine is running to avoid accidents.
Model | WLS150 | WLS200 | WLS250 | WLS300 | WLS400 | WLS500 | ||
Number | ||||||||
Spiral diameter(mm) | 150 | 184 | 237 | 284 | 365 | 470 | ||
Outer diameter(mm) | 180 | 219 | 273 | 351 | 402 | 500 | ||
Incline degree(α ) | 0 °~30 ° | 0 °~30 ° | 0 °~30 ° | 0 °~30 ° | 0 °~30 ° | 0 °~30 ° | ||
Max Length(m) | 12 | 13 | 16 | 18 | 22 | 25 | ||
Capacity(t/h) | 2.4 | 7 | 9 | 13 | 18 | 28 | ||
Motor |
Model | L ≤ 7 |
Y90L-4 | Y100L1-4 | Y100L2-4 | Y132S-4 | Y160M-4 | Y160M-4 |
Power kW | 1.5 | 2.2 | 3 | 5.5 | 11 | 11 | ||
Model | L>7 |
Y100L1-4 | Y100L2-4 | Y112M-4 | Y132M-4 | Y160L-4 | Y160L-4 | |
Power kW | 2.2 | 3 | 4 | 7.5 | 15 | 15 |
Structure: | Conveyor System |
---|---|
Material: | Carbon Steel |
Material Feature: | Oil Resistant, Heat Resistant, Fire Resistant |
Application: | Chemical Industry, Grain Transport, Mining Transport, Power Plant |
Condition: | New |
Capacity: | 5-65m3/H |
Customization: |
Available
| Customized Request |
---|
Screw Shaft Features Explained
When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.
Threads
The major diameter of a screw thread is the larger of the two extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of one sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
Lead
In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around eighty percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.
Pitch
The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of one wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the two terms and discuss how they relate to one another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.
Helix angle
The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
Size
The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to sixteen inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of two inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
Shape
Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by two features: its major diameter, or distance from the outer edge of the thread on one side to the inner smooth surface of the shaft. These are generally two to sixteen millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of two opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the two main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.
Lubrication
In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.
editor by CX 2023-11-13
China gypsum board equipment China gypsum board machine manufacturer screw conveyor shaft
Applicable Industries: Manufacturing Plant
Weight (KG): 500
Showroom Location: Kenya, Algeria, Bangladesh, Saudi Arabia, Pakistan
Video outgoing-inspection: Provided
Machinery Test Report: Provided
Marketing Type: Hot Product 2571
Warranty of core components: 1 Year
Core Components: PLC
Warranty: 1 Year
Name: gypsum board machine
Capacity per year: 2-30 million m2
Paper supply system: Adopt special pneumatic shaft and magnetic powder brake
Gypsum powder supply system: Exclusive impeller feeder and high precision weighting belt
Foaming system: Dynamic and static combined foaming system
Water supply and mixing system: Accurate screw measurement pump and visual liquid flow meter
Forming system: Special wearable stainless steel.
Drying system: The core of the whole production line.
Heating system: Thermal carrier boiler
Dust removal system: Pulse blow bag dust collector
Packaging Details: Sea freight, OEM Motor Steering Intermediate Steel Pto Drive Axle Shaft about need 8-9 40′ high containers for 30,000 ton gypsum powder machine. The small parts and electric control part packed by wooden case and others deliver to the container directly.
Port: Xihu (West Lake) Dis.g port, ZheJiang , China
GYPSUM board production line withcapacity 2-30 MILLION SQM PER YEAR
ZheJiang LVJOE MACHINERY MANUFACTURING GROUP CO., LTD.
ForwardPaper faced gypsum board production line is a kind of light weight board decorating material with many specifications, Factory Customized AC Single-phase Fan Coil Motor Double Dual Shaft AC Fan Air Conditioning Motor whose main raw material are calcined plaster (natural plaster, desulfurized plaster, Phosphor plaster) and card board( face paper), adding certain percentage of water, starch, Original Germany FAG 6004 Deep Groove Ball Bearing 6004-C-2Z Ball Bearing 20X42X12mm additives and foaming agent, after mixing, forming, cutting, drying, Heavy-duty Construction Excavator Mining Crane Slew ring Drive Gearbox Slewing bearing for Solar tracking system Industry shearing and sealing procedures etc.
Item | Configuration | Number | Specification | Power | |
paper supply system | 01 | Lift | 1 | | 4kw |
02 | Paper support | 4 | | | |
03 | Pneumatic shaft/regular shaft | 4 | | | |
04 | Paper connector | 2 | | | |
05 | Position adjuster | 2 | | 0.09kw*2 | |
06 | Marking device | 1 | | 1.1kw*2 | |
07 | Glue-coating device | 1 | | | |
08 | Paper shelf | 1 | | | |
water supply system | 01 | Starch tank | 2 | | |
02 | Starch mixer | 2 | | 1.5kw*2 | |
03 | Measuring pump | 1 | 2.5inches | 2.2kw | |
04 | Water supply pipes | 1 | | | |
starch supply system | 01 | Lift | 1 | HL300 | 4kw |
02 | Silo | 1 | | | |
03 | Star style unloader | 1 | | 0.75kw | |
04 | Screw conveyor/rubber belt conveyor | 2 | | 3kw | |
05 | Vibration sieve | 1 | | 1.1kw | |
06 | Pneumatic unloader | 1 | | | |
07 | Metal detector | 1 | | | |
08 | Weighing belt | 1 | | | |
Vesicant supply system | 01 | Vesicant tank | 2 | | |
02 | Vesicant mixer | 2 | | 0.75kw*2 | |
03 | Screw pump | 1 | 1 inch | 1.1kw | |
04 | Air compressor | 1 | | 4kw | |
05 | Air hose | | | | |
06 | Heat exchanger | 1 | | | |
07 | Pressostat | 1 | | | |
08 | Air reservoir | 1 | | | |
Forming section | 01 | Stainless vertical mixer | 1 | | 7.5kw |
02 | Vibration table | 1 | | 0.55kw | |
03 | Forming device | 1 | | | |
04 | Edge crap supply device | 1 | | 2.2kw | |
Transportation system | 01 | Rubber belt conveyor | 1 | 38m | |
02 | Shaping device | 3 | | | |
03 | Printer | 1 | | | |
04 | Blank roller conveyor | | | | |
05 | Automatic cutter | 1 | | 2.2kw | |
06 | 1#fast conveyor | 1 | | 0.75kw | |
Transferring system | 01 | Lift | 2 | | 1.5kw |
02 | 1#belt transferring conveyor | 1 | | 1.5kw | |
03 | Overturner | 1 | | 3kw | |
04 | 2#belt transferring conveyor | 1 | | 1.5kw | |
05 | 2# transferring conveyor | 1 | | 2.2kw | |
06 | Distributor | 1 | | 2.2kw | |
07 | Defective board remover | 1 | | | |
heat supply system | 01 | Burner/coal burning CZPT grate | 1 | | |
02 | Coal economizer | 1 | | | |
03 | Hot oil boiler | 1 | | 2 million Kcal. | |
04 | High site oil tank | 1 | | | |
05 | Low site oil tank | 1 | | | |
06 | Hot oil circulation pump | 2 | | | |
07 | Separator | 1 | | | |
Drying system | 01 | Fast advance conveyor | 6 | | 0.55kw*6 |
02 | Preheating conveyor | 1 | | | |
03 | Heating conveyor | 1 | | 5.5kw | |
04 | Cooling conveyor | 1 | | | |
05 | Fast out conveyor | 6 | | 0.55kw*6 | |
06 | Hot air circulating system | 2 | | | |
07 | Moisture exhaust device | 3 | | | |
08 | Air ventilator | 2 | | 30kw | |
09 | Cooling pipe | 144 | | | |
10 | Heat exchanger | | | | |
11 | valve | 36 | | | |
12 | Heat preservation door | 78 | | | |
13 | Conveying roller | 990 | | | |
14 | Air distributor | 42 | | | |
15 | Outside air room | 6 | | | |
Board releasing system | 01 | Combination conveyor | 1 | | 1.5kw |
02 | Lift | 2 | | 3kw | |
03 | Belt conveyor | 2 | | 1.5kw*2 | |
04 | Folding device | 1 | | 3kw | |
05 | Chain conveyor | 1 | | 2.2kw*2 | |
06 | Saw (cutting the gypsum board to specified length) | 2 | | 1.5kw*2 | |
07 | Board distributor | 1 | | | |
08 | Automatic stacker | 1 | | | |
09 | Hydraulic station | 1 | | 4kw | |
10 | Board alignment device | 4 | | | |
Sealing system | 01 | Bag-style water supply device | 1 | | |
02 | Conveyor | 1 | | 1.5kw | |
03 | Automatic sealing device | 2 | | | |
Dust collecting system | 01 | Bag-style dust collector | 1 | | |
02 | High pressure air ventilator | 1 | | 4kw | |
03 | Dust filter mask | 4 | | | |
04 | Steel frame | 1 | | | |
05 | Dust removing valve | 1 | | 0.75kw | |
Electrical control system | | Industrialized computer or PLC system | | |
1.1 Construction scale Capacity: 2-50 MILLION sq.m./a (based on 1200mm*3000mm*9.5m, capacity is changing with thickness)
1.2 Product project Thickness: 7-25mm Width: 1200mm-1220mm Length: 2400mm-3600mm Note: Other Customed Specifications Of Gypsum Board Are Available
1.3 The Allocation of the Worker Monitor : 1 worker/8 hours Forming System : 2 workers/8hours Dosing System : 1 workers /8 hours Conveyor System: 2 workers/8hours Stacking System: 1 Workers/8hours Maintain Worker : 1 worker/8hours Electronic Control System: 2 workers/8hours Total : 10 workers/8hours
1.4 Working Time The time of production: 300 days/year×24 hours/day
Lead Screws and Clamp Style Collars
If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:
Acme thread
The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
Lead screw coatings
The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
Clamp style collars
The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these two styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
Ball screw nut
The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during one rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with one or two independent closed paths. Multi-circuit ball nuts have two or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.
editor by czh 2023-07-03
China China SFU3210 1000mm 2000mm 3000mm CNC Ball Lead Screw C7 China Ballscrew Linear Guide Ball Screws SFU1605 screw conveyor shaft seals
Condition: New
Warranty: 3 months
Applicable Industries: Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Printing Shops, Other
Weight (KG): 1.5
Showroom Location: None
Video outgoing-inspection: Provided
Machinery Test Report: Provided
Marketing Type: New Product 2571
Warranty of core components: 3 months
Core Components: Bearing
Manufacturing Process: Milled Thread
Material: Aluminum
Length: 300-1500mm(customized)
Product name: Ball screw linear module
Application: Automatic System
Performance: Smooth Linear Xihu (West Lake) Dis. Rail
Structure: Slide Rail + Slide Block
Packaging: Wooden Box
Packaging Details: Ball Screw Linear Module packed with Wooden Box & carton
Port: HangZhou
Ball Screw Linear Xihu (West Lake) Dis. Features:A ball screw, like a lead screw, converts rotary motion into linear motion. The device consists of a threaded shaft and a ballnut.Ballscrews are often a first choice for linear-motion applications because the use of recirculating ball bearings provideshigh efficiency, load capacity, and positioning accuracy. Furthermore, ballscrews generally provide equal or better load capacity than leadscrews, and so are a better choice when load requirements exceed leadscrew capabilities. Product Paramenters Recommend Products Company Profile HangZhou Chuanhe Mechanical and Electrical Co.,Ltd,one of the largest distributors of ULS (Xinxin Linear Precision Machinery) in China. Located in HangZhou City, ZheJiang Province. Our factory is located in ZheJiang Province. Large stock, leading time is very short. Our main products include: ULS miniature linear guide, stainless steel material guide, carbon steel material guide, Cheapest! Best! Fast! 1pcs stepper motor nema23 3Nm + Driver + Power supply + controller board for CNC widened linear guide, etc. We take “quality for survival, service for development” as our business philosophy. Our company is equipped with the most professional sales team to provide customers with high quality products and excellent service. we look CZPT to cooperating with you. Thank you! Exhibition Packing & Delivery To better ensure the safety of your goods, professional, environmentally friendly, convenient and efficient packaging services will be provided. FAQ 1. who are we?We are based in ZheJiang , China, start from 2571,sell to North America(50.00%),Eastern Europe(10.00%),Southeast Asia(10.00%),Africa(10.00%),South America(5.00%),Mid East(5.00%), Reacher Tech Customized Permanent Magnet Esk8 6374 Brushless Off Road Electric Longboard Motor For Longboard Oceania(2.00%),Western Europe(2.00%),Eastern Asia(1.00%),Central America(1.00%),Northern Europe(1.00%),Southern Europe(1.00%),South Asia(1.00%),Domestic Market(1.00%). There are total about 11-50 people in our office.2. how can we guarantee quality?Always a pre-production sample before mass production;Always final Inspection before shipment;3.what can you buy from us?Linear guide rail,Gear motor4. why should you buy from us not from other suppliers?HangZhou Chuanhe Mechanical and Electrical Co.,Ltd,one of the largest distributors of ULS (Xinxin Linear Precision Machinery) in China. We take “quality for survival, service for development” as our business philosophy.5. what services can we provide?Accepted Delivery Terms: FOB,EXW,DDP; New CZPT Tractor 9N 8N 2N & Massey TE20 TO20 TO30 PTO Shaft Conversion Kit Accepted Payment Currency:USD,CNY;Accepted Payment Type: T/T,L/C,Credit Card,PayPal;Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian
Lead Screws and Clamp Style Collars
If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:
Acme thread
The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
Lead screw coatings
The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
Clamp style collars
The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these two styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
Ball screw nut
The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during one rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with one or two independent closed paths. Multi-circuit ball nuts have two or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.
editor by czh 2023-03-20
China Hang Shaft for Screw Conveyor threaded bearing shaft
Product Description
Hang shaft for screw conveyor
Introduction
Pipe screw conveyor is a mechanism that uses a rotating helical screw blade coiled around a shaft,it offers a variety of solutions for bulk materials conveying like granular and small bulk materials horizontally or aslope, meanwhile,pipe screw conveyor is very cost-effective and require minimal maintenance to operate. Pipe screw conveyor is widely used for transporting coal,ash,slag,cement,food waste, wood chips, aggregates, cereal grains, animal feed, boiler ash, meat and bone meal, municipal solid waste, and many others.
Advantages and Features
1.Whole sealing structure, no pollution to the environment,no material leakage.
2.According to working conditions, screw conveyor can be designed to multiple inlets and outlets.
3.Flexible installation type, conveyor angle can be 0-30 degree to meet varies requirement.
4.Hanging bearing is provided to connect screw blades and bear the screw body weights.
5.Adopts the method of spot welding to weld spiral blade on the screw shaft.
6.Construction material with carbon steel, stainless steel and abrasion-resistant alloys are optional.
7.Can be disassemble into several sections, save space during transportation.
8.Reducer motor brand can be domestic or imported: Tailong, SEW, Siemens etc.
Technical Parameter:
GX Screw Conveyor Technical Performance | ||||||||
Type | Length/m | Throughput (t/h) | Rotating speed/(r/min) | Reducer | Motor | Weight/kg | ||
Type | Speed ratio | Type | Power/kW | |||||
GX200 | 10 | 9 | 60 | YZQ250 | 23.34 | Y90S-4 | 1.1 | 726 |
GX200 | 20 | 9 | 60 | YZQ250 | 23.34 | Y90L-4 | 1.5 | 1258 |
GX250 | 10 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 2.2 | 960 |
GX250 | 20 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 3 | 1750 |
GX300 | 10 | 21.2 | 60 | YZQ350 | 23.34 | Y100L2-4 | 3 | 1373 |
GX300 | 20 | 21.2 | 60 | YZQ350 | 23.34 | Y112M-4 | 4 | 2346 |
GX400 | 10 | 51 | 60 | YZQ400 | 23.34 | Y132S-4 | 5.5 | 1911 |
GX400 | 20 | 51 | 60 | YZQ500 | 23.34 | Y160M-4 | 11 | 2049 |
GX500 | 10 | 87.5 | 60 | YZQ400 | 23.34 | Y132M | 7.5 | 2381 |
GX500 | 20 | 87.5 | 60 | YZQ650 | 23.34 | Y180M-4 | 18.5 | 5389 |
GX600 | 10 | 134.2 | 45 | YZQ750 | 23.34 | Y180L-4 | 22 | 3880 |
GX600 | 10 | 134.2 | 45 | YZQ850 | 23.34 | Y250M-4 | 55 | 7090 |
Selection Conditions
♦Material to be processed: _____ | ♦Working environment is indoor or outdoor:________ |
♦Handling capacity (Ps. It means the total | ♦Working environment temperature: _______ ºC |
material capacity feeding from the inlet): _____t/h | ♦Upstream equipment (Ps. It means what kind of |
♦Bulk Density: _____t/m3 | equipment is used to feed the material): _____ |
♦Conveying distance(distance between | ♦Downstream equipment (Ps. It means what kind of |
inlet and outlet):__________m | equipment is used to discharge the material): _____ |
♦Material size:____mm | ♦Installation form is horizontal or inclined : ________; |
♦Material temperature: _______ ºC | If it is inclined,what is the inclined degree_____° , |
♦Water content:____% | and whether a supporting frame is needed:_______ |
♦Material is corrosive or not: ____ (Ps. Yes or No) | ♦Working power supply: _____V ______HZ |
We mainly provide the following equipments :
Vibrating Screen | Rotary vibrating screen |
Ultrasonic vibrating screen | |
Gyratory screen | |
Trommel screen | |
Linear vibrating screen | |
Circular vibrating screen | |
Dewatering screen | |
Vibrating feeder | |
Belt Conveyor | Belt conveyor |
Sidewall belt conveyor | |
Portable belt conveyor | |
Shuttle conveyor | |
Tripper | |
Bucket Elevator | Efficient bucket elevator |
Belt bucket elevator | |
Ring chain bucket elevator | |
Plate chain bucket elevator | |
Cement bucket elevator | |
Silo bucket elevator | |
Screw Conveyor | U-type screw conveyor |
Cement screw conveyor | |
Pipe screw conveyor | |
Scraper Conveyor | Horizontal scraper chain conveyor |
Incline scraper chain conveyor | |
Grain scraper chain conveyor |
US $699-9,680 / Set | |
1 Set (Min. Order) |
###
Type: | Screw Conveyor |
---|---|
Structure: | Inclining Conveyor |
Material: | Carbon Steel |
Material Feature: | Fire Resistant |
Certification: | ISO9001:2008, ISO9001:2000, CE |
Energy Saving: | Energy Saving |
###
Samples: |
US$ 999/Set
1 Set(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
GX Screw Conveyor Technical Performance | ||||||||
Type | Length/m | Throughput (t/h) | Rotating speed/(r/min) | Reducer | Motor | Weight/kg | ||
Type | Speed ratio | Type | Power/kW | |||||
GX200 | 10 | 9 | 60 | YZQ250 | 23.34 | Y90S-4 | 1.1 | 726 |
GX200 | 20 | 9 | 60 | YZQ250 | 23.34 | Y90L-4 | 1.5 | 1258 |
GX250 | 10 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 2.2 | 960 |
GX250 | 20 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 3 | 1750 |
GX300 | 10 | 21.2 | 60 | YZQ350 | 23.34 | Y100L2-4 | 3 | 1373 |
GX300 | 20 | 21.2 | 60 | YZQ350 | 23.34 | Y112M-4 | 4 | 2346 |
GX400 | 10 | 51 | 60 | YZQ400 | 23.34 | Y132S-4 | 5.5 | 1911 |
GX400 | 20 | 51 | 60 | YZQ500 | 23.34 | Y160M-4 | 11 | 2049 |
GX500 | 10 | 87.5 | 60 | YZQ400 | 23.34 | Y132M | 7.5 | 2381 |
GX500 | 20 | 87.5 | 60 | YZQ650 | 23.34 | Y180M-4 | 18.5 | 5389 |
GX600 | 10 | 134.2 | 45 | YZQ750 | 23.34 | Y180L-4 | 22 | 3880 |
GX600 | 10 | 134.2 | 45 | YZQ850 | 23.34 | Y250M-4 | 55 | 7090 |
###
♦Material to be processed: _____ | ♦Working environment is indoor or outdoor:________ |
♦Handling capacity (Ps. It means the total | ♦Working environment temperature: _______ ºC |
material capacity feeding from the inlet): _____t/h | ♦Upstream equipment (Ps. It means what kind of |
♦Bulk Density: _____t/m3 | equipment is used to feed the material): _____ |
♦Conveying distance(distance between | ♦Downstream equipment (Ps. It means what kind of |
inlet and outlet):__________m | equipment is used to discharge the material): _____ |
♦Material size:____mm | ♦Installation form is horizontal or inclined : ________; |
♦Material temperature: _______ ºC | If it is inclined,what is the inclined degree_____° , |
♦Water content:____% | and whether a supporting frame is needed:_______ |
♦Material is corrosive or not: ____ (Ps. Yes or No) | ♦Working power supply: _____V ______HZ |
###
Vibrating Screen | Rotary vibrating screen |
Ultrasonic vibrating screen | |
Gyratory screen | |
Trommel screen | |
Linear vibrating screen | |
Circular vibrating screen | |
Dewatering screen | |
Vibrating feeder | |
Belt Conveyor | Belt conveyor |
Sidewall belt conveyor | |
Portable belt conveyor | |
Shuttle conveyor | |
Tripper | |
Bucket Elevator | Efficient bucket elevator |
Belt bucket elevator | |
Ring chain bucket elevator | |
Plate chain bucket elevator | |
Cement bucket elevator | |
Silo bucket elevator | |
Screw Conveyor | U-type screw conveyor |
Cement screw conveyor | |
Pipe screw conveyor | |
Scraper Conveyor | Horizontal scraper chain conveyor |
Incline scraper chain conveyor | |
Grain scraper chain conveyor |
US $699-9,680 / Set | |
1 Set (Min. Order) |
###
Type: | Screw Conveyor |
---|---|
Structure: | Inclining Conveyor |
Material: | Carbon Steel |
Material Feature: | Fire Resistant |
Certification: | ISO9001:2008, ISO9001:2000, CE |
Energy Saving: | Energy Saving |
###
Samples: |
US$ 999/Set
1 Set(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
GX Screw Conveyor Technical Performance | ||||||||
Type | Length/m | Throughput (t/h) | Rotating speed/(r/min) | Reducer | Motor | Weight/kg | ||
Type | Speed ratio | Type | Power/kW | |||||
GX200 | 10 | 9 | 60 | YZQ250 | 23.34 | Y90S-4 | 1.1 | 726 |
GX200 | 20 | 9 | 60 | YZQ250 | 23.34 | Y90L-4 | 1.5 | 1258 |
GX250 | 10 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 2.2 | 960 |
GX250 | 20 | 15.6 | 60 | YZQ250 | 23.34 | Y100L1-4 | 3 | 1750 |
GX300 | 10 | 21.2 | 60 | YZQ350 | 23.34 | Y100L2-4 | 3 | 1373 |
GX300 | 20 | 21.2 | 60 | YZQ350 | 23.34 | Y112M-4 | 4 | 2346 |
GX400 | 10 | 51 | 60 | YZQ400 | 23.34 | Y132S-4 | 5.5 | 1911 |
GX400 | 20 | 51 | 60 | YZQ500 | 23.34 | Y160M-4 | 11 | 2049 |
GX500 | 10 | 87.5 | 60 | YZQ400 | 23.34 | Y132M | 7.5 | 2381 |
GX500 | 20 | 87.5 | 60 | YZQ650 | 23.34 | Y180M-4 | 18.5 | 5389 |
GX600 | 10 | 134.2 | 45 | YZQ750 | 23.34 | Y180L-4 | 22 | 3880 |
GX600 | 10 | 134.2 | 45 | YZQ850 | 23.34 | Y250M-4 | 55 | 7090 |
###
♦Material to be processed: _____ | ♦Working environment is indoor or outdoor:________ |
♦Handling capacity (Ps. It means the total | ♦Working environment temperature: _______ ºC |
material capacity feeding from the inlet): _____t/h | ♦Upstream equipment (Ps. It means what kind of |
♦Bulk Density: _____t/m3 | equipment is used to feed the material): _____ |
♦Conveying distance(distance between | ♦Downstream equipment (Ps. It means what kind of |
inlet and outlet):__________m | equipment is used to discharge the material): _____ |
♦Material size:____mm | ♦Installation form is horizontal or inclined : ________; |
♦Material temperature: _______ ºC | If it is inclined,what is the inclined degree_____° , |
♦Water content:____% | and whether a supporting frame is needed:_______ |
♦Material is corrosive or not: ____ (Ps. Yes or No) | ♦Working power supply: _____V ______HZ |
###
Vibrating Screen | Rotary vibrating screen |
Ultrasonic vibrating screen | |
Gyratory screen | |
Trommel screen | |
Linear vibrating screen | |
Circular vibrating screen | |
Dewatering screen | |
Vibrating feeder | |
Belt Conveyor | Belt conveyor |
Sidewall belt conveyor | |
Portable belt conveyor | |
Shuttle conveyor | |
Tripper | |
Bucket Elevator | Efficient bucket elevator |
Belt bucket elevator | |
Ring chain bucket elevator | |
Plate chain bucket elevator | |
Cement bucket elevator | |
Silo bucket elevator | |
Screw Conveyor | U-type screw conveyor |
Cement screw conveyor | |
Pipe screw conveyor | |
Scraper Conveyor | Horizontal scraper chain conveyor |
Incline scraper chain conveyor | |
Grain scraper chain conveyor |
Types of Screw Shafts
Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which one is the best choice for your project? Here are some tips to choose the right screw:
Machined screw shaft
The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
Acme screw
An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
Lead screw
A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, one should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.
Fully threaded screw
A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are two major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically one millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect two elements.
Ball screw
The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.
editor by czh 2022-11-24