Product Description
Quick Details
Product Name:Twin Screw Extruder Parts Screw Elements for TSE Machine
Material: W6MO5CR4V2
Color: Metal
Exprience:20 years
Packaging: Wooden Box or Paper Box According to your order
Lead Time: 5-60 days
Product Description
Screw elements are the main working parts for twin screw extruder which determined the quality and output of plastic products.With high quality,the screw elements assure plastic molecular mixing,cutting,spreading as well as reacting among themselves etc.Extremely high self cleaning performance assure the high quality of the whole production line,for this,our company combiend our experience for years,the merits about foreign countries and the customer’s use,then take them into action,designed all kinds of suitable processing screw element with reasonable parameters,high self cleaning performance,wear resistance,corrosion-resistance.
We can satisfy your different material needs:
According to appearance design,
According to Materical
-For wear application:
Tool Steel:W6Mo5Cr4V2
PM-HIP material:WR5,WR13,WR14,CPM10V,CPM9V.
-For corrosion application:
38CrMoAla
PM-HIP material:WR4,WR13,WR14,CPM10V,CPM9V.
-For wear and corrosion application:
PM-HIP material:WR13,WR14,CPM10V,CPM9V.
-Other materials:
Stainless Steel:316L,440C etc.
Through the understanding of customers,recommend the most valuable material.
Tool Steel
W6Mo5Cr4V2 Chemical Composition | |||||||||||
C | SI | Mn | P | S | Cr | Mo | V | W | Cu | Ni | |
W-% | 0.88 | 0.35 | 0.3 | 0.571 | 0.003 | 4.03 | 4.81 | 1.86 | 5.95 | 0.12 | 0.24 |
Key Features:
1) Tool steel, the steel has a high hardenability and thermal cracking resistance, the steel contains a higher content of tungsten,molybdenum,chromium and alum, good wear resistance, toughness is relatively weakened, with good heat resistance.
2) High hardness,Hardenallity HRC up to 65.
Co-rotating Twin Screw Elements for:
-W&P:ZSK-MC
-Theysohn:TSK
-SM:TEK-HS
-Labtech:LTE
-Berstorff:ZE
-Maris:TM-W
-Feddem:FED-MTS
-Leistritz:ZSE/LSB
-APV:MP65
-JSW-TEX
-TOSHLBA:TEM
-KEYA,RuiYA,LANTAI,Umm-N
Production Process
NO.1
Workblank
Select high-quality raw materials
|
|
NO.2
Piecewise According to the drawing section length
|
|
NO.3
Hit bottom hole Rough machining the bottom hole,and then pull spline
|
|
NO.4
Machining thread Professional high-end processing equipment,rough machining threads
|
|
NO.5
Finish machining thread
|
|
NO.6
Threading grinding Further control of tolerance
|
Packing&Delivery
Packing Details: According to your order quantity packaging,shipping wooden boxes,air carton.
Delivery Details: 5-60days after order.
1.Rust-proof oil processing, Prevent rust in transit. |
2.Oiled paper packages, Prevent oil dry. |
3.Bubble wrap package, Prevent collosions. |
4.Special foam packaging. | 5.Packing | 6.Sealing |
Our Service
24-hour Hotline
No matter when and where to call we can find our service to you.
|
Pre-sales Consultation
We have 5 sales people online, and whether you have any question can be solved through online communication,welcome your consultation. |
After-sales Services
Receive products have any questions about the product, can look for us,we will help you deal with the the first time,to your satisfaction. |
All ZT keep pay attention to every step of the details,We are looking forward to the forge ahead together with you!
|
FAQ
How long does it take to get my products since I paid for them?
—According to yout order quantity,we will give you a reasonable delivery date.
Can I get the warranty of 1 year for free?
—If you need the warranty,you should pay for it.If not,do not worry ,we have confidence in our products.
How is your after-sale service?
—You will get our help in time as long as you find something wrong about our produces.Believe us,you deserve the best.
What machine does the product apply to?
—Twin Screw Extruder Machine.
Screw Sizes and Their Uses
Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.
The major diameter of a screw shaft
The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
The pitch diameter of a screw shaft
When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.
The thread depth of a screw shaft
Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
The lead of a screw shaft
Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.
The thread angle of a screw shaft
The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
The tapped hole (or nut) into which the screw fits
A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.